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LEITER TO THE EDITOR 

Diffusion in random media as a problem of interacting 
Bose and Fermi fields 

A L Kholodenko and Karl F Freed 
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA 

Received 2 November 1983 

Abstract. Diffusion on a percolative lattice is formulated as a theory of interacting 
Bose-Fermi fields. The effective medium approximation (EMA) of Odagaki and Lax is 
obtained directly from the functional integral and is used to provide an EMA approximation 
for the diffusion constant and the DC conductivity. Simple corrections to the usual EMA 
produce exponents near the percolation threshold that agree with the best available data 
for d = 2 and 3. This agreement reveals a strong connection between the dynamics of 
percolative diffusion and percolation itself. 

Fortuin and Kasteleyn (1972) exhibit the deep c-rlection between the Potts model 
and problems of bond percolation and resistor networks. They show how the percola- 
tion quantities of interest can be obtained as the q + 1 limit of a q-state Potts ,lodel, 
while the q + O  limit is used to calculate the DC resistivity of a non-random network. 
Dasgupta et a1 (1978) extend this approach to the random resistor network and treat 
the problem using E expansions about six dimensions within a Wilson-Kadanoff 
renormalisation scheme. Subseqent attempts have been made to improve upon these 
results. (See Sahimi er a1 (1983a) and references therein.) 

It is believed that near the percolation threshold the DC conductivity (+ varies as 

where is the conductivity critical exponent, p is the bond (resistor) probability 
(concentration), and pc is the percolation threshold probability. In two dimensions 
Derrida and Vannimems (1982) use transfer ITI,:T-~X methods and finite size scaling 
to obtain p2=  1.28*0.03. In three dimensions experimental data of Abeles er a1 
(1975) and series expansion estimates of Fisch and Harris (1977) yield p3 = 1.95 * 0.03. 
This letter provides a simple theory of these exponents. The method used applies only 
for distances larger than a correlation length. The approach considers the general 
problem of diffusion in random media with the random resistor network being a special 
case. 

Consider the standard problem of hopping on a d-dimensional hyperlattice as 
described by the equation of motion 

with P,(t) the probability of being at site n at time t and Trim the hopping matrix. 
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The initial conditions are taken as Pn(0) = Sno. The hopping matrix is subject to the 
constraint 

C T n m  = O  
n 

(3) 

in the absence of trapping. This constraint plays an important role in the subsequent 
analysis. When the Tmn are random numbers, we are ultimately interested in the 
average (Pn( t ) )o  over a random ensemble of the Trim. The Laplace transformation of 
(2) gives 

( s Z - H ) P ( s )  = I o  (4)  

with s the Laplace variable conjugate to t, P(s) the transform of P ( t ) ,  Z the unit 
matrix, 1, = SnO, and the constraint (3) implies H is defined by 

For simplicity, consider the symmetric case of Tmn = Trim. 
The random resistor problem follows upon the replacement of Tnm + U,,,,,, where 

unm is the conductivity between sites n and m and wnm =U,,,,,. The matrix H has the 
essential property 

similar to the constraint (3 ) .  Equation (6) implies det H = 0, and the equality of all 
cofactors of H (Harary 1969). Hence, when s = O  in (4), the matrix s l - H + H  does 
not have an inverse, an important fact omitted in the recent attempt by Carton (1983) 
to combine Bose and Fermi fields to describe the percolation problem. 

In random diffusion problem considered here, the quantity of interest is the average 

(7) 
with (Pn( t ) ) ,  the inverse Laplace transform of Gno(s). The s = O  case is of relevance 
to the DC resistivity of a non-random resistor network (Fortuin and Kasteleyn 1972, 
Wu 1982). In the DC problem the matrix H does not have an inverse, and cofactors 
of H are all equal to the number of spanning trees which can be constructed from a 
graph related to the matrix H (Harary 1969). This observation has been used by 
Fortuin and Kasteleyn (1972) to present the non-random network problem as the 
q + 0 limit of a Potts model, while Dasgupta et a1 (1978) add the replica trick to extend 
the description to the random case. This latter work, however, ignores the constraint 
Tnm = Tmn for symmetric hopping (or U,,,,, = U,,,,,) when the average is performed. This 
feature is readily incorporated with possibly only minor numerical changes, but no 
alteration of exponents. Stephen (1978) treats the s # 0 case when the matrix ( s l - H )  
does not have the property (6), so it is unclear U priori how the Potts model can be 
applied in this case. Stephen claims that the s # 0 case produces the exponents lying 
within the same universality class as the s = 0 case. This is a plausible assumption, but 
unfortuantely no explicit proof of the statement has been given to date, so the question 
still remains open as does the calculation of the conductivity exponent p. 

G( S) = (( sZ- H ) - ' ) , =  (K-')o 

Given the inverse matrix (7),  the mean square displacement is obtained as 

\ n  / 
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where 9 - l  denotes an inverse Laplace transform. The diffusion coefficient is then 
obtained as (Gefen et al 1983) 

d gma lim - (R2(t))o,  
1-m d t  (9) 

and the DC conductivity follows from the Einstein relation 

uDC = e2nCBa,/ T (10) 

with n the carrier concentration, e its charge, and T the temperature in energy units. 
Electrons can only contribute to uDc if they belong to an infinite percolative cluster, 
so the fraction of available carriers is given by n a ( p  - p J P  for p + pc.  Combining this 
fact with (1) and (10) yields the result 

%oa ( p  - Pc)'-p (11) 

where /3 is known but p remains to be determined. 

the two identities (Efetov 1983) 
Here we evaluate D,, enabling p to then be determined from (1 1). Begin with 

where 4 and $ are complex Bose and Fermi fields. These identities enable (7) to be 
transformed to 

where A, = qTqi + +?& and the constraint (3) must be incorporated when the average 
( )0 is applied. 

First we derive the effective medium approximation (EMA) from (14) by introduc- 
tion of the non-random matrix M such that ( M ) ,  = M. Consider the quantity 

Z = ( ( e ~ p [ - ( K - M ) A - M A + f * c p + c p * f ] ) ) ~  (15) 

where (. . .) denotes the functional average over c p T ,  pi, $7 and $i, and (14) is obtained 
via 8 In Z/ayiayTI,=,*=O in the usual way. Let ( )M represent the functional average 
with weight 22 exp(-MA+y*4 + 4 * y )  so that ( l ) M  = 1. Then we may write 

Z = z,((exp[-(K-M)AI),),. (16) 

If s is chosen as real, (16) produces the inequality 

za ZM exp[-(((K - ~) .4)M)01.  

The best approximation results when 

O=(((K-IM)A),),I,.=,=,=(M-'-K-l)0, (18) 
which is just the conventional EMA condition (Odagaki and Lax 1981). Using the 
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for the jump probabilities, the EMA condition (18), and the constraint (3) yields (Sahimi 
et a1 1983b) 

lim ( R 2 ) o ~ ( ~ - ~ , ) t  (20) 
1-c13 

for d = 2 and 3 with pc = pFMA = (2/2) and z the lattice coordination number. The 
EMA result (20) and the definition (9) can be used to provide an approximation for 
the diffusion constant, but this simple result may readily be improved by noting that 
below pc propagation is confined to some of the clusters of various sizes. At pc at least 
one infinite cluster is formed, and diffusional propagation requires that the particle 
initially be on this infinite cluster. Over length scales L for which a<< L<< 6, with a 
the lattice constant and 6 the fractal (percolation) correlation length (a ( p - p c ) - ” ,  we 
have the case of fractal diffusion (Gefen et a1 1983). Ordinary diffusional motion (20) 
occurs only for L >> 6, while for a << L << 6 the fractal dimension enters into the calculation 
of ( R 2 (  t ) ) ” .  The cross over between these regimes remains to be described, but evidently 
the EMA applies only for L >> 6. 

Using (9) and (20) produces the naively EMA prediction % a ( p - p , ) .  However, 
equations (4) and (7) imply that this naive result implicitly presumes that the particle 
begins motion on some particular site 0. The random nature of the lattice requires 
that we perform an average over all possible initial lattice sites. Then contributions 
to this site average yield the form (20) only for initial sites lying on the infinite cluster, 
so (20) must be multiplied by the fraction of initial sites which belong to the infinite 
cluster. Since this fraction is proportion1 to ( p - p , ) @ ,  equations (9), (20) and this factor 
yield 

9% a ( P  - p,)  (21) 

Equating the exponent in (21) to that in (1 1) produces 

p = 1 + 2 p .  (22) 

Stauffer (1979) gives p = 0.14 for d = 2, while Sahimi er al(1983a) have p = 0.46 f 0.05 
in d = 3 .  Hence we obtain the values p2=1 .28  and p3=1 .92k0 .1  for d = 2  and 3, 
respectively, in remarkable agreement with the most accurate two-dimensional calcula- 
tions (Derrida and Vannimenus 1982) p2 = 1.28k0.03 and in excellent agreement 
with three-dimensional experiments (Abeles er al 1975) p3 = 1.9 f 0.2 and the most 
reliable series estimate p3 = 1.95 10 .03  (Fisch and Harris 1977). Recent Monte Carlo 
calculations for D, on percolation clusters by Havlin et a1 (1983) obtain the diffusion 
exponents 1.05k0.05 for d = 2  and 1.5k0.1 for d = 3  in good agreement with our 
predictions of 1 + P. This remarkable agreement is not coincidental. It reveals a strong 
connection between diffusion on a percolative lattice and the underlying percolation 
phenomenon. Our analysis employs pFMA, but this choice does not affect the calculated 
exponents. A better estimate of pc requires the treatment of fluctuations about the 
mean fluid solution. We plan to provide such a generalisation in a subsequent paper. 

We are grateful to Leo Kadanoff for attracting our attention to this problem. This 
research is supported, in part, by MRL(NSF) facilities at the University of Chicago. 
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